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Abstract: We have studied asymmetric reactions that proceed via chiral enolates A, 
B, and C based on restricted bond rotation around the chiral C-C,1) C-N,2,3) and C-O4) 
axes, respectively (Figure 1). The typical racemization barriers of these chiral 
enolates are ~22, ~16, and ~12 kcal/mol, respectively, which corresponds to half-
lives of racemization of ~24 days at –20 °C, ~22 h at –78 °C, and ~1 sec at –78 °C, 
respectively. Although chiral enolate B with a chiral C-N axis derived from 
phenylalanine has relatively long half-life of racemization (22 h) at –78 °C, chiral 
enolate D derived from alanine has short half-life of racemization (1.1 h) even at –78 
°C. These circumstances limited the use of chiral enolate D for asymmetric 
intermolecular reactions due to the partial racemization during the relatively long 
reaction times for intermolecular reactions. Under these backgrounds, we found a 
simple solution to this problem. The half-life of racemization of chiral enolate E 
derived from an alanine benzyl ester was found to be >100 times longer than that of 
D derived from the corresponding ethyl ester. The tremendous elongation of the 
lifespan of 
enolate chirality 
could be ascribed 
to its aggregate 
structure 
including cation-π 
interaction as 
shown in E-
aggregate. By 
virtue of this 
protocol for 
racemization-
resistant chiral 
enolates, we 
have successfully 
developed 
asymmetric 
α−fluorination of 
α−amino acid 
derivatives, which 
proceeded in up 
to 97 % ee 
(Scheme 1). 
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Scheme 1. Asymmetric α-Fluorination via Memory of Chirality
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Figure 1. Enolates with Dynamic Chirality


