

Racemization-Resistant C-N Axially Chiral Enolates: Application to Asymmetric α**–Fluorination of** α**-Amino Acid Derivatives**.

Institute for Chemical Research, Kyoto University, Uji, Kyoto 611-0011, Japan kawabata@scl.kyoto-u.ac.jp

Abstract: We have studied asymmetric reactions that proceed via chiral enolates **A**, **B**, and **C** based on restricted bond rotation around the chiral C-C,¹⁾ C-N,^{2,3)} and C-O⁴⁾ axes, respectively (Figure 1). The typical racemization barriers of these chiral enolates are \sim 22, \sim 16, and \sim 12 kcal/mol, respectively, which corresponds to halflives of racemization of \sim 24 days at –20 °C, \sim 22 h at –78 °C, and \sim 1 sec at –78 °C, respectively. Although chiral enolate **B** with a chiral C-N axis derived from phenylalanine has relatively long half-life of racemization (22 h) at –78 °C, chiral enolate **D** derived from alanine has short half-life of racemization (1.1 h) even at –78 °C. These circumstances limited the use of chiral enolate **D** for asymmetric intermolecular reactions due to the partial racemization during the relatively long reaction times for intermolecular reactions. Under these backgrounds, we found a simple solution to this problem. The half-life of racemization of chiral enolate **E** derived from an alanine benzyl ester was found to be >100 times longer than that of **D** derived from the corresponding ethyl ester. The tremendous elongation of the

References:

(1) Kawabata, T.; Yahiro, K.; Fuji, K. *J. Am. Chem. Soc.* **1991**, *113*, 9694–9696. (2) Kawabata, T.; Suzuki, H.; Nagae, Y.; Fuji, K. *Angew. Chem. Int. Ed.* **2000**, *39* (12), 2155–2157. (3) Tomohara, K.; Yoshimura, T.; Hyakutake, R.; Yang, P.; Kawabata, T. *J. Am. Chem. Soc.* **2013**, *135*,13294–13297. (4) Yoshimura, T.; Tomohara, K.; Kawabata, T. *J. Am. Chem. Soc.* **2013**, *135*, 7102–7105.

"11th International Symposium on Carbanion Chemistry" 17-21 July 2016, Rouen, Normandy, France